
ORIGINAL ARTICLE

On arousal from sleep: time-frequency analysis
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Abstract Time-frequency analysis of the heart rate var-

iability during arousal from sleep, with and without EMG

activation, coming from five obese healthy subjects was

performed. Additionally, a comparative analysis of three

time-frequency distributions, smooth pseudo Wigner–Ville

(SPWVD), Choi–Williams (CWD) and Born–Jordan dis-

tribution (BJD) is presented in this study. SPWVD showed

higher capacity for eliminating the cross terms indepen-

dently of the signal. After applying Hilbert transformation

to real signals BJD and CWD lost some important mathe-

matic properties as marginals, on the contrary PSWVD

remains unchanged. BJD showed results comparable with

CWD. During arousal episodes, analogous energy distri-

bution and spectral indexes were obtained by the three

time-frequency representations. Arousals with chin activity

presented stronger changes in RR intervals and LF (related

to sympathetic activity) component, being statistically

different with respect to arousal without chin activity, only

around the period of maximum change in b activity on the

EEG. These results suggest a more evident stress for the

heart when an arousal is related to external muscular

activity.

Keywords Heart rate variability � Arousal from sleep �
Time-frequency distributions � Sleep fragmentation �
Autonomic nervous system

1 Introduction

In the last few years, arousal from sleep has been one of the

most studied sleep phenomena related to sleep fragmenta-

tion. Sleep fragmentation is associated with several

symptoms, ranging from somnolence, excessive daytime

sleepiness, impaired learning, reduced memory capabilities

[31] and up to much more severe consequences such as

cardiovascular diseases. When sleep fragmentation is

associated with sleep-disordered breathing [47, 48], such as

obstructive sleep apnea (OSA), there is a high-likelihood to

develop arterial hypertension and other cardiovascular

diseases [9, 17, 46, 48].

Arousals are normally scored from either the central or

the occipital leads of the electroencephalogram (EEG)

during standard polysomnographic studies. An arousal

consists in ‘‘an abrupt shift in EEG frequency, which may

include h, a and/or frequencies greater than 16 Hz but not

spindles’’ [1]. Different studies have been carried out in

order to understand the physiologic effects of arousals.

Some examples of the experimental protocols used during

arousal studies include: inducted arousals at different

intensities and periodicities during sleep as well as arousals

after sleep deprivation [8, 11, 18, 19, 33, 40]. A number of
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studies reported that arousal generates a typical waveform

in the heart rate (HR), which consists in an abrupt incre-

ment followed few seconds later by a decrement in HR [9,

33, 40].

Spectral analysis of the heart rate variability (HRV)

signal represents a powerful noninvasive tool for evaluat-

ing the action of the autonomic nervous system (ANS). It is

widely known that power spectral density (PSD) of the

HRV exhibits oscillations, which are related to the para-

sympathetic and sympathetic activities. Wide band of

spectral components of the HRV goes from 0.003 to

0.5 Hz, where the range between 0.003 and 0.04 Hz (very

low-frequency component, VLF) takes account of long-

term regulation mechanisms; the range between 0.04 and

0.15 Hz (low-frequency component, LF) represents both

sympathetic and parasympathetic modulation [24, 32], but

an increase in its power is generally associated to a sym-

pathetic activation. However, even nowadays, there is a

controversy about the contribution of each autonomic

branch to this frequency band. The 0.15–0.5 Hz range

(high-frequency component, HF) corresponds to parasym-

pathetic modulation and it is synchronous with respiratory

rate [45]. Finally the low to high frequency ratio is a

concise index to evaluate the sympatho-vagal balance [29]

controlling HR.

So far, most of the studies have investigated the effects

that arousals produce on the cardiovascular system by

using time domain or Fourier transform (FT) techniques.

Only few works applied more sophisticated techniques

such as time-varying analysis, to evaluate the dynamic

changes of the cardiovascular control during arousals [6].

To this regard, we focused our attention on a special and

well-known set of tools called Cohen’s class time-fre-

quency distributions (TFDs) [16].

The purposes of this study are: (1) to evaluate the ability

of different time-frequency distributions including smooth

pseudo Wigner–Ville distribution (SPWVD), Choi–Wil-

liams distribution (CWD) and Born–Jordan distribution

(BJD), in assessing the temporal dynamics of the auto-

nomic control during spontaneous arousals and (2) to

assess cardiac autonomic control during arousals associated

or not to muscular activity using the most adequate

approach according to (1).

2 Methodology

During constant physiological conditions, the HRV signal

is stationary, thus application of Fourier transform or

autoregressive batch analysis gives adequate spectral

description of the signal. However, when it is necessary to

analyze rapid changes in the signal (transients), such as the

HRV variations during Valsalva maneuver, apneas and

arousals, these approaches are not the most suitable. In

order to overcome this inconvenience, other techniques

such as, short time Fourier transform [22], discrete wavelet

analysis [28], time-varying analysis [4] and quadratic time-

frequency distributions [16, 22], have been introduced.

Previous studies obtained interesting inferences on neural

control of circulation, by applying these mathematical

methods to the HRV analysis in different cardiovascular

diseases and sleep disorders [3, 5, 34, 36, 43].

2.1 Time-frequency distributions

Cohen’s class time-frequency distributions of a signal x(t)

have the special characteristic of being time and frequency

shift invariant and are generally defined as:

Cxðt; f Þ ¼
ZZ

uðt � t0; sÞx � t0 � s
2

� �
x t0 þ s

2

� �
e�j2pf sdt0ds

ð1Þ

where uðt � t0; sÞ is a function labeled kernel. By

choosing different kernels, different features of the

distributions are obtained. The function of the kernel is

to reduce spurious components generated by the quadratic

nature of the distribution. Those are called cross-terms and

disturb the energy signal interpretation in the time-

frequency plane. For the HRV analysis, the most used

distributions in literature are: smooth pseudo Wigner–Ville

distribution and Choi–Williams distribution. Another

distribution frequently used in literature is the Born–

Jordan distribution. All these distributions come from the

Cohen’s class and are defined as in the following according

to the kernel u(t,s).

2.1.1 Smooth pseudo Wigner–Ville distribution

uðt; sÞ ¼ cðtÞg s
2

� �
g� � s

2

� �
ð2Þ

This distribution was introduced by Martin W. and Flan-

drin P. in 1985 [30] and is characterized by independent

smoothing functions in time and frequency, originated by

c(t) and g s
2

� �
g� � s

2

� �
windows, respectively.

2.1.2 Choi–Williams distribution

uðt; sÞ ¼
ffiffiffiffiffiffiffiffiffi
r

4 p

r
1

s
exp � r

4

t

s

� �2
� �

ð3Þ

It was introduced by Choi and Williams in 1989 [14]. The

scaling factor r determines the cross-term suppression,

time and frequency resolution and the auto-terms concen-

tration. High values of r give good auto-terms definition
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and low cross-terms suppression, while low values of r
reduce cross-terms and spread out the auto-terms.

2.1.3 Born–Jordan distribution

u t; sð Þ ¼
1
sj j ; t=sj j\1=2

0; t=sj j[ 1=2

�
ð4Þ

This distribution has attractive properties since it asso-

ciates mixed products of time and frequency domains

[15]. The distribution had been used as basis for creating

other distributions or for evaluating new distributions

[25, 27, 44].

2.2 Basic properties of the time-frequency distributions

Detailed and extensive description of the distribution

properties, connected to a specific kernel is reported in

literature [16, 22]. In the present section, we only recall a

brief summary of the most important properties that a

kernel should satisfy in order to be useful for the time-

frequency analysis of biomedical signals:

Property 1—the TFD should be real valued, and as a

consequence, the kernel must satisfy the relation:

uðt; sÞ ¼ u�ðt;�sÞ

Property 2—the TFD should attain the marginals. In

other words, if we integrate the TFD with respect to

the time axis, we should obtain the power spectrum of the

signal in the frequency domain. Furthermore, if the

integration is carried out with respect to the frequency

axis, the result should be the instantaneous power as a

function of time.Z
Cx t; fð Þdt ¼ X fð Þj j2

Z
Cx t; fð Þdf ¼ x tð Þj j2

Where X(f) is the Fourier transform of the signal x(t). This

is obtained only if the kernel satisfies the following

relations:

uðt; 0Þ ¼ dðtÞ and

Z
uðt; sÞ ¼ 1

where d(t) is the Dirac’s D function.

Property 3—the TFD should satisfy the finite support,

this implies that the kernel should be zero in the time and

frequency regions where the signal does not exist.

Cx t; fð Þ ¼ 0 when

x nð Þ ¼ 0 for t\ t1 and t [ t2

X fð Þ ¼ 0 for f \ f1 and f [ f2

This will be obtained if the kernel attains:

uðt; sÞ ¼ 0 for tj j[ sj j

2.3 Synthetic signal

The analysis of these mathematical approaches is illus-

trated by using a synthetic bi-component signal s(n), which

is formed by summing up a sinusoid and a Gaussian

function. The synthetic signal structure is defined as

follows:

sðnÞ ¼ sinð2 p fnÞ þ 1

r
ffiffiffiffiffiffiffiffiffi
2 p
p e

n�lð Þ2

2r2

� �

where n is time, f = 0.25 Hz and r = 3.5. Sinusoid

function is defined for 1 B n B 512 and Gaussian function

for 92 B n B 319, zero otherwise. Gaussian function was

modulated with a frequency equal to 0.05 Hz.

The frequency value of the sinusoid was assigned

similar to the respiratory frequency, while the duration

(20 s) of the Gaussian function was chosen in order to

reproduce approximately the duration of an arousal. The

analysis is limited to this simple synthetic signal that

allows to assess the capabilities of the different TFDs in

analyzing the ANS behavior during physiological

conditions.

Sampling frequency of the synthetic signal was 4 Hz

with 512 samples as duration. TFD parameters were chosen

on the basis of recommendations and experimental results

reported in previous studies. For SPWVD [28, 34, 35]:

smoothing time window was a Hamming of 21 samples

and smoothing frequency window was a Hamming of 129

samples. For CWD [39]: fixed value of r = 1.

Three frequency bands: A (0.35–0.45 Hz), B (0.2–

0.3 Hz) and C (0.05–0.1 Hz) were selected in order to have

an indication of the cross-term and auto-term amplitudes.

Each band and the total frequency range (0–0.5 Hz) were

integrated across the frequency axis for comparing with

the theoretical instantaneous power of the signal. In a

second step, we applied the Hilbert transform to the real

signal in order to evaluate how much the cross-terms are

reduced and the mathematical properties of the TFDs are

maintained.

2.4 Arousal from sleep data

2.4.1 General procedures

Five overnight polysomnographic recordings were

obtained from healthy subjects screened for obstructive

sleep apnea. Table 1 shows the clinical data for all sub-

jects. Data were obtained by a polymnosograph heritage
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digital PSG grass telefactor with 100 Hz as sampling fre-

quency. Recorded variables were oxygen saturation, body

position, two encephalographic derivations (C4/A1 and

O1/A2), chin electromyogram (EMG), left and right

electrooculogram (EOG), leg movement, airflow, thoracic

and abdominal respiratory movements and electrocardio-

gram (ECG).

2.4.2 Protocol

Sleep stages were evaluated according to the standard

criteria [37], only C4/A1 EEG channel, ECG and chin

eletromyogram were used in the present analysis. Arousals

were identified from EEG channel during stage 2, in

agreement with the definition given in [1]. The arousals

were semi-automatically detected by an algorithm descri-

bed below and then checked by an expert. We restrained

arousal definition to a closed and limited group of arousals,

which are characterized by duration between 3 and 6 s.

Further, the included arousals were not preceded by

k-complexes. The arousals were detected as follows:

– EEG channel was filtered by a low-pass filter with cut

frequency of 30 Hz.

– Four filters, with 0–4, 4–8, 8–13 and 16–30 Hz as pass

bands, were used to separate d, h, a and b cerebral

activity components, respectively.

– b and h components were squared and smoothed with a

moving average filter (100 points).

– From smoothed b rhythm, only events higher than a

threshold (200% higher than the previous 10 s) value

and with a time duration between 3 and 6 s were taken

as arousal.

– Arousals were classified in to two groups: (1) EEG shift

frequency and (2) EEG shift frequency and muscular

activity.

– A new arousal was identified at least 40 s after the end

of the previous one.

– Arousals close at least 120 s to a sleep stage change

were not considered.

– Arousal detection was based on the rectified b rhythm,

after this process, expert clinical personal revised the

identified arousals.

Fourteen arousals without muscular activity and 17 with

muscular activity were selected which were not associated

to sleep events. Then, the RR interval was detected from

the ECG channel through a derivative algorithm. Due to

the low sampling frequency, a better detection of the R

peaks was obtained by parabolic interpolation [4]. When

extra-systoles happened, the corresponding portion of the

signal was discarded. The minimum RR value during the

arousal event (corresponding to the b-increment) was taken

as reference point. A time window of 90 s (30 s before and

60 s after the reference point, RR minimum value) was

considered for the analysis.

2.4.3 Spectral analysis

Resulting RR sequences were re-sampled at 2 Hz by cubic

spline interpolation and detrended by subtracting the mean

value. Then, Hilbert transform was applied to the RR

sequences to obtain an analytic signal. After that, SPWVD

was used to obtain the RR power at different frequencies

and times. We decided to use this distribution on the basis

of a comparative analysis performed on the synthetic

Table 1 Clinical data of the subjects included in the study

Subject Sex Age BMI Weight (kg) Height (m) Total sleep time (h) Sleep efficiency (%TIB)

1 F 53 37 100 1.64 6.14 93

2 M 50 35 88 1.58 6.4 95

3 M 47 35 98 1.67 6.25 92

4 M 50 36 95 1.63 6.49 96

5 M 49 38 103 1.64 6.32 92

REM (%TST) S1 (%TST) S2 (%TST) SWS (%TST) Arousal index (%TST) Total arousals Arousals included in the study

With EMG Without EMG

22.5 14.1 44.5 18.9 5.2 32 3 2

20 5.3 37.7 37 6 38 3 3

20 8.6 45 26.4 2.7 17 2 1

31 9.6 35.8 23.6 11.6 75 5 5

20.1 20.1 36.3 23.6 3.6 23 4 3

S1, S2 mean sleep stages 1 and 2, respectively; SWS slow wave sleep; TST total sleep time
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signals, which is also presented in the result section. Total

power, VLF, LF, HF power and LF/HF have been calcu-

lated for each sample in the RR sequence. The time-

frequency representations and the spectral indexes were

obtained using the absolute values of the distributions.

2.4.4 Data analysis

Time series segments of 90 s during arousals were analyzed.

RR intervals and the time series of the spectral indexes

corresponding to each arousal were normalized as percent-

age of relative changes in respect to a baseline, where the

baseline was obtained averaging the first 20 s of each

sequence (baseline before the arousal). All the indexes are

expressed as mean ± standard error (SE). In addition, all the

indexes were divided in four phases defined as: ‘‘0’’ average

of five beats occurring 10 s before the RR minimum, ‘‘1’’

average of three beats centered around the RR minimum,

‘‘2’’ average of four beats occurring 5 s after the RR mini-

mum and ‘‘3’’ average of ten beats occurring 15 s after RR

minimum. These intervals were selected as key points that

could characterize the arousal episode in the RR interval.

One-way ANOVA for repeated measures was performed

to compare the indexes in time with respect to the reference

value. Bonferroni’s post-hoc analyses were performed to

estimate significant differences (p \ 0.05). Two groups

t-test was used to compare arousals with muscular or

without muscular activity.

3 Results

3.1 Synthetic signal analysis

The energy content at different times and frequencies of the

synthetic signal is shown in Fig. 1. All the TFDs are able to

separate the signal components. However, BJD shows a

higher number of cross-terms coming from the perpen-

dicular relation between the auto-terms located in the

negative and positive frequencies. It is worth noting that

the cross-terms maintain the marginal properties of the

TFD. The three TFDs tracked accurately the frequency

changes along the time.

Figure 2 shows the results of the TFDs for the analytic

version of the synthetic signal. One can observe that the

SPWVD does not show perceptible visual changes in the

energy distribution between analytic and real signal ver-

sion. For analytic signal, the CWD and BJD present very

noticeable changes in their graphical representation of the
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Fig. 1 Time-frequency analysis of the synthetic signal. The first row

shows the time evolution of the PSDs of the signal obtained through

three time-frequency representations: smooth pseudo Wigner–Ville

distribution (SPWVD), Choi–Williams distribution (CWD) and

Born–Jordan distribution (BJD). The second row depicts the

instantaneous power for A (dashed line), B (black line) and C (gray
line) frequency bands. The third row presents the instantaneous power

for the whole frequency axis, gray line represents the theoretical

instantaneous power while black line is the one obtained after

integrating the PSD with respect to the frequency axis
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energy content. In addition, the cross-terms are almost

completely removed and the marginal properties were not

preserved since the TFDs are not able to follow time by

time the instantaneous power of the signal (see Fig. 2, row

3). The three TFDs seem to have the same performance

when an analytic signal is analyzed. If we compare the row

2 of Figs. 1 and 2, the powers in band B show a clear

increment, meaning that the auto-terms are more concen-

trated in the time-frequency plane and the cross-terms

reduced.

3.2 Arousal analysis

Figure 3 depicts the energy distribution of the RR interval

sequence during an arousal using SPWVD, CWD and BJD.

One can observe, in the second column (real signal), that all

TFDs disjoin perfectly the spectral components of the RR

interval but CWD and BJD present higher cross-terms

spreading across the frequency axis. The results of the TFDs,

for analytic version are shown in column one. It is possible to

note small residuals of cross-terms on CWD and BJD.

Finally, on the basis of these previous results, we deci-

ded to use SPWVD for the analysis of the RR sequences.

Figure 4 displays the spectral indexes of the HRV for 17

arousals with (black symbols) and 14 arousals without

(gray symbols) muscular activity. The values are repre-

sented as the percentage of change with respect to a

baseline. The figure shows around 20 s before and after the

RR minimum value in order to observe the arousal effects

on the HRV indexes. RR interval decreases and reaches the

minimum value 7 s after the initial increment in the cere-

bral b activity. Then the recovery phase starts going up to

the baseline and returning to the baseline 15 s later during

arousals with muscular activity. RR interval decreases

showing significant lower values with respect to baseline in

the time interval between 14 and 22 s, while during

arousals without muscular activity, there are significant

differences with respect to the baseline only within the time

interval between 18 and 19 s. The second subplot shows

the time evolution of the rectified b activity: Both groups of

arousals present the same characteristics in amplitude and

duration. Significant differences from baseline were found

within the time interval between 15 and 22 s. In both cases,

the HF component decreased immediately when an arousal

occurs. However a larger decrement was observed during

arousal associated with muscular activity. After that, HF

returns slowly to the baseline. No significant differences
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Fig. 2 Time-frequency analysis of a synthetic signal, after the

Hilbert transformation. The first row shows the time evolution of

the PSD of the signal obtained by three time-frequency representa-

tions, Smooth pseudo Wigner–Ville distribution (SPWVD), Choi–

Williams distribution (CWD) and Born–Jordan distribution (BJD).

The second row depicts the instantaneous power for A (dashed line),

B (black line) and C (gray line) frequency bands. The third row

present the instantaneous power for the whole frequency axis, gray
line represents the theoretical instantaneous power while black line is

the one obtained after integrating the PSD with respect to the

frequency axis
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with respect to baseline were found in any condition. LF

component increased largely reaching its maximum close

to the same time as RR value was minimum and going back

to the baseline 25 s later, values were higher when mus-

cular activity was present. Significant differences in respect

to baseline were found in the time intervals between 15–26

and 19–22 s during both types of arousals. VLF component

and LF/HF ratio showed a similar trend.

Comparison of the spectral indexes between arousals

with and without muscular activity in specific time periods

is shown in Figure 5. Patterns in both groups were the

same. RR interval decreases in phase 1 with respect to the

baseline. Then it increases during phase 2 and finally goes

back to the baseline. Significant differences between the

two classes of arousals were found only in phase 1. HF

power decreases in phase 1 and presents a rise during phase

2 and returns to baseline during phase 3. Not significant

differences were found between the two arousal groups.

LF, VLF and LF/HF ratios show an increase during phase

1, whose values remain similar in phase 2. Finally in phase

3, they go back to the baseline. Statistical differences

between the two groups of arousals occurred during phase

1.

4 Discussion

In the first part of this study, we compared different time-

frequency distributions, smoothed pseudo Wigner–Ville,

Choi–Williams and Born–Jordan distributions in order to

identify the best one suited for the analysis of the HRV

signal during arousals. Furthermore, the time-frequency

analysis of the heart rate variability during spontaneous

arousals in healthy obese subjects was carried on by

applying SPWVD. Arousals were divided in to two groups:

(1) arousals accompanied by muscular activity and (2)

arousals without muscular activity.

From a methodological point of view, SPWVD, CWD

and BJD show characteristics suitable for analyzing the

time evolution of the HRV spectral features during arousal

events. Even though the clearest energy representation is

obtained when SPWVD is used, the other two distributions

also allow distinguishing in a clear and comprehensible

way at each time, the spectral content of the arousal events.

For analytic signals, CWD and BJD do not retain the

marginal properties and both show similar time-frequency

representations and smoothed instantaneous power as

SPWVD.

From the physiological point of view, arousals accom-

panied and not accompanied by muscular activity, present

similar time evolution in the RR interval and spectral

indexes. However, when a muscular activity takes place, a

higher sympathetic activation is observed.

SPWVD displays cleaner time-frequency energy repre-

sentation than BJD and CWD. Its smooth windows are able

to eliminate almost completely the cross-terms, but

SPVWD does not follow time by time the real value of the

instantaneous power of the signal (as shown in Fig. 1).
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Fig. 3 Energy distribution of

RR intervals during an arousal

from sleep obtained with

SPWVD, CWD and BJD. RR

interval was analyzed as a real

and analytic (after Hilbert

transformation) sequences
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Nevertheless, SPWVD tracks the changes in the frequency

components with high time resolution, as it can be noticed

in Fig. 1. Even if CWD and BJD did not display a clear

time-frequency energy distribution, the auto-terms were

completely identifiable with a good time and frequency

resolution. BJD presents the greatest quantity of cross-

terms, but as reported in literature and observed in Fig. 1, it

is able to track well the exact instantaneous power of the

signal. When an analytic signal is examined, the three

TFDs show almost the same performances in the estima-

tion of the instantaneous power. Therefore, it seems

indifferent to use any of these distributions in such con-

dition. This observation suggests that the major quantity of

cross-terms is generated between the negative and positive

frequencies at each time. Our study shows in a simple and

practical way that the advantage of the analytic signal in

order to minimize cross-terms when a multi-component

signal is analyzed. A rigorous and interesting mathematical

description is found in the papers presented by Schreier and

Boashash [7, 38].

As final point, when spectral components of the HRV

are studied in the time-frequency plane, it is not necessary

to know the exact value of the power at each point, while it

is important to detect the changes in the frequency com-

ponents of the signal. Therefore, SPWVD could be a good

option for the dynamical evaluation of the ANS action on

HRV. However, also BJD and CWD are suitable for the

analysis of HRV during transient events. Some papers

describe comparative studies between the SPWVD, CWD

and other distributions, remarking that the best analysis
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approach depends on the self-features of the signal under

study [12, 23, 26, 35].

Arousals may be linked to different sleep disturbances,

such as periodic leg movements, restless-leg syndrome and

sleep apnea. Physiological arousal can be related with

alerting reactions that activate different body systems, such

as the cardio-respiratory one, to cope with external stimuli.

The nature of the spontaneous arousals could be seen as a

vigilance system monitoring the external environment.

However, due to the very close relation with sleep

pathologies, arousal from sleep is seen as an indicator of

sleep fragmentation and its quantification gives a clinical

index of sleep quality [21].

Arousal responds differently to the specific causes of

activation, and some other cerebral waves such as k-com-

plexes and spindles seem to participate as primary form of

arousal. For instance, some studies have found an incre-

ment is d power during the breathing restore in OSA

patients [2]. Then a hierarchical arousal response could be

found and it depends on the efferent information towards

the central nervous system. D-activations, k-complex and

arousal produce different reactions of the autonomic ner-

vous system depending on the requirements for

overcoming a noxious event. k-complex produces a mild

autonomic activation, while arousals generates very strong

autonomic reaction [39]. In this way, an arousal with

muscular activation suggests either greater vigilance state

or powerful response than ones without muscular

activation.

Characteristic changes in the heart rate have been

reported previously in different physiological and patho-

logical conditions. In conditions, where repetitive arousals

occur, as cyclic alternating pattern [20] or periodic leg

movement [41], a VLF component in the spectral compo-

nents of the HRV signal appears, reflecting the influence of

arousal repetition on HRV signal. A single arousal produces

a large increment in the LF component, which suggests a

major activation in the sympathetic activity, in order to

reactivate some mechanisms of defense or alertness. Time-

frequency approaches allow evaluating the time evolution

of the sympatho-vagal balance with high time and fre-

quency resolution. Time and frequency resolutions are

defined in the kernel parameters. In SPWVD, the length of

the independent (in time and in frequency) smoothing

windows (kernel) defines the resolution. Length selection of

these windows depends directly upon the characteristics of

the signal in analysis. Proper selection of window lengths

allows obtaining good time-frequency representations and

the extraction of important information of interest. If a large

frequency-smoothing window is selected, cross-terms are

reduced but there is the risk of not discriminating the dif-

ferent frequencies. On the contrary, short frequency-

smoothing window increases the resolution, but reduces the

ability of eliminating cross-terms and consequently not

clear time-frequency representations may be obtained.

Only few studies in literature have so far addressed the

issue of using time-frequency approaches to analyze the

HRV during arousal episodes. Our results are in agree-

ment with the previous studies [8, 9, 33]. On the other

hand, there are little discrepancies with the study by Blasi

et al. [6], where the time evolution of the spectral

parameters is analyzed. LF time activation and the time

frame, in which, spectral indexes remain altered after

arousal event, are much longer in [6] than in the present

study. These disagreements could be produced by subject

characteristics and/or arousal type. Infact, they considered

evoked arousals while here only spontaneous ones are

analyzed; this suggests that acoustic click could be

responsible of an LF longer response since this process

involves the activation and participation of the sensory

system. Induced arousals seem to elicit different behavior

in the ANS response; in fact, Sforza et al. [21] docu-

mented different autonomic responses in correspondence

of different EEG events.

On the other hand, Smurra et al. [42] compared the

feasibility of the visual scoring of the arousals using ASDA

and UCL definitions (from the EEG and electromyography

activity during NREM sleep). They found that arousals

scored in the two methods were comparable in terms of

concurrence and reproducibility. Vice versa, a clear dif-

ference between the two definitions is found when arousal

is considered in terms of effects on HRV. The results of the

present study suggest that arousals accompanied with chin

activity (UCL definition) present a higher autonomic

response during the phase of maximum tachycardia (see

Fig. 5). Finally, the RR interval obtained with the pre-

sented protocol showed the typical pattern of tachy-

bradycardia, when an arousal episode happens, alone or

together with chin activity. In addition, significant differ-

ences found between the two groups of arousals suggest

that major activation in the autonomic sympathetic activity

takes place when external muscular activity also occurs.

In the last years, alternatives approaches to evaluate

sleep have been developed, however, without taking

arousals into account [10, 13]. Caffarel et al. [10] presented

an interesting analysis between standard and automatic

sleep staging, in which, they concluded that automatic

sleep classification do not present robust measures as the

gold standard. However, a previous detection of arousals

could offer additional information to improve the auto-

matic sleep staging. In addition, arousals could be

evaluated by alternatives measures as that presented by

Chen et al. [13]. In this study respiration and pulse rate are

detected by a pillow sensor during sleep. Arousals could be

assessed by this approach since when an arousal occurs,

respiration and pulse rate present variations.
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This study is limited to a small and specific sample of

healthy subjects (obese), and a larger study in normal

subjects is necessary. Furthermore, the selection of

arousals was set-aside at sub-definition from the ASDA

report. An extension of this protocol is necessary in order

to include other definitions of arousals [21, 39]. Future

work would include the analysis of arousals using time-

frequency approaches in bi-variate form, in order to

obtain maximum information from the interrelation

among different signals, such as respiration and heart rate,

during arousal events.

5 Conclusion

SPWVD, BJD and CWD demonstrated to be fine tools to

evaluate the spectral parameters of the HRV during tran-

sient episodes such as arousals. For real signals, SPWVD

seems to offer a simpler computation and clearer energy

representation than BJD and CWD. When analytic signals

are evaluated, it seems indifferent to use any distribution

since their energy representations are extremely similar.

Besides BJD lost its excellent properties when an analytic

signal is used, this distribution presents a major time-fre-

quency resolution than the other ones.

The results obtained in this study suggest that arousals

accompanied by muscular activity are associated with

greater sympathetic activation than arousals without mus-

cular activity in sleep stage 2, although the duration of the

tachy-bradycardia and recovery time were similar.
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